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Abstract
The Timoshenko system is a distinguished coupled pair of differential equations aris-

ing in mathematical elasticity. In the case of constant coefficients, if a damping is

added in only one of its equations, it is well-known that exponential stability holds

if and only if the wave speeds of both equations are equal. In the present paper we

study both non-homogeneous and homogeneous thermoelastic problems where the

model’s coefficients are non-constant and constants, respectively. Our main stabil-

ity results are proved by means of a unified approach that combines local estimates of

the resolvent equation in the semigroup framework with a recent control-observability

analysis for static systems. Therefore, our results complement all those on the linear

case provided in [22], by extending the methodology employed in [4] to the case of

Timoshenko systems with thermal coupling on the bending moment.
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1 INTRODUCTION

The Timoshenko system is a widely accepted model for vibrations of elastic beams. Its mathematical formulation is given by a
system of two partial differential equations

𝜌𝐴𝜑𝑡𝑡 = 𝑆𝑥 and 𝜌𝐼𝜓𝑡𝑡 = 𝑀𝑥 − 𝑆, (1.1)

where, 𝜑 = 𝜑(𝑥, 𝑡) and 𝜓 = 𝜓(𝑥, 𝑡) stand for the transversal displacement and rotation angle, respectively. In its rest configura-
tion the beam coincides with an interval of the 𝑥-axis, here denoted by [0, 𝑙]. The quantities 𝑀 and 𝑆 represent, respectively,
the bending moment and the shear stress. For the remaining constants, 𝜌 is the mass density and 𝐴 and 𝐼 denote the area and
the inertial moment of the transversal section, respectively. The corresponding constitutive elastic laws are given by

𝑆 = 𝜅𝐴(𝜑𝑥 + 𝜓) and 𝑀 = 𝐸𝐼𝜓𝑥, (1.2)

where 𝐸𝐼 represents the flexural rigidity of the material and 𝜅 is a shear coefficient. Then one obtains from (1.1) and (1.2) the
classical Timoshenko system
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𝜌1𝜑𝑡𝑡 − (𝑘(𝜑𝑥 + 𝜓))𝑥 = 0, (1.3)

𝜌2𝜓𝑡𝑡 − (𝑏𝜓𝑥)𝑥 + 𝑘(𝜑𝑥 + 𝜓) = 0, (1.4)

where 𝜌1 = 𝜌𝐴, 𝜌2 = 𝜌𝐼, 𝑘 = 𝜅𝐴, 𝑏 = 𝐸𝐼 . See for instance [31, Section 55].
In this paper we are interested in the asymptotic stability of the system when a damping is added only in the equation for

rotation angle. In this direction, a remarkable result was given by Soufyane [30], which asserts that the Timoshenko system with
a damping −𝛽(𝑥)𝜓𝑡 added in Equation (1.4) is exponentially stable, if and only if,

𝜌1
𝑘

=
𝜌2
𝑏
. (1.5)

This means that the energy of the system decays exponentially if and only if the wave speeds of both Equations (1.3)–(1.4)
are equal. In this case there is an effective transfer of the dissipation from the damped equation to the undamped one. The
condition (1.5) was later used and extended to Timoshenko systems with other type of dissipations or forcing terms. See e.g.
[1,5,9–11,13,14,17,20,28,29]. However, condition (1.5) is not needed to stabilize exponentially the system when both equations
are damped. Indeed, this situation was studied, for instance, in [8,18,27].

On the other hand, we observe that the above mentioned works are all concerned with the Timoshenko system with constant
coefficients. With respect to non-homogeneous coefficients, the partially damped Timoshenko system was studied by Ammar-
Khodja, Kerbal and Soufyane [6]. They considered internal and boundary dissipations acting only in the equation for rotation
angle (1.4) and proved that exponential stability holds if, as a function of 𝑥, condition (1.5) is satisfied for all 𝑥 ∈ [0, 𝑙]. However,
in practice, it is very unlikely that both equations in the non-homogeneous Timoshenko system have equal wave speeds for all
𝑥 ∈ [0, 𝑙]. Indeed, for constant coefficients, condition (1.5) is never achieved, as observed in [24].

Here, in order to achieve (uniform) exponential stability, our first main result (Theorem 2.2) proposes a more flexible and
general condition than asking (1.5) for all 𝑥 ∈ [0, 𝑙]. Roughly speaking, for the partially damped thermoelastic system, we prove
that exponential stability holds provided that condition (1.5) is satisfied locally, that is, for any small enough open sub-interval
𝐼 ⊂ [0, 𝑙], we just assume that

𝜌1(𝑥)
𝑘(𝑥)

=
𝜌2(𝑥)
𝑏(𝑥)

for 𝑥 ∈ 𝐼. (1.6)

Otherwise, only polynomial decay is proved with rate depending on the regularity of initial data (Theorem 2.3). Such stability
results are precisely clarified in Section 2 to a new non-homogeneous thermoelastic system (non-constant coefficients), where
by following [22] we assume that a thermal dissipation is applied on the bending moment

𝑀𝜃 = 𝑏𝜓𝑥 − 𝑚𝜃, (1.7)

where 𝜃 denotes the relative temperature and 𝑚(𝑥) > 0 is a non-constant coupling coefficient. In addition, the homogeneous
thermoelastic system (constant coefficients) previously considered in [22] is also approached in Section 5 with some different
boundary conditions. In such a case, and working in the general case where (1.5) is not taken into account, our main result is
Theorem 3.2 that proves the same polynomial decay independent of boundary conditions. Comparisons with existing results on
the subject are given as follows as well as how the remaining work is organized.

(i) The non-homogenous thermoelastic Timoshenko problem (see (2.1)–(2.5) in Section 2) is first addressed in the present
article. Theorems 2.2 and 2.3 are new and have been proved by relying on a careful control-observability analysis, which is
recalled in the Appendix A for the sake of the reader. It is worth mentioning that, as far as we know, the locally equal wave
speeds assumption (1.6) has not been previously considered in the literature for non-homogeneous Timoshenko systems
with thermal coupling on the bending moment under the Fourier law. Therefore, Theorem 2.2 is the first main result of the
section. Moreover, even the case where (1.6) is not assumed, then Theorem 2.3 provides a unified approach on polynomial
stability that was not considered previously in [22] even for constant coefficients.

(ii) Although the homogeneous thermoelastic Timoshenko system (see (3.1)–(3.5) in Section 5) has already been addressed in
[22], our stability results in this section provide a significantly complement of those contained therein to the linear case.
Indeed, in this part the main result is Theorem 3.2 where one proves that the problem (3.1)–(3.5) is, in general, polynomially
stable with decay rate depending on the regularity of initial data, but independently of boundary conditions considered in
(3.5). In addition, Theorem 3.3 also asserts on optimality in some specific cases. Such statements were not addressed in [22]
when (1.5) does not hold. Even in the case where assumption (1.5) is regarded, Theorem 3.1 complements the corresponding
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result in [22] because it gives a unified approach on exponential stability independently of boundary conditions through
the semigroup theory, which differentiates of the approach in [22, Sects. 2 and 3], where perturbation energy methods are
employed for each boundary condition separately.

(iii) In spite of using the same tools as in [3,4] to reach our stability results in Sections 2 and 5, we observe that the proofs
of them rely on totally different process, by requiring new (and distinct) estimates. In fact, by following the thermal law
applied on the shear force as in [2], the authors in [3,4] consider

𝑆𝜃 = 𝑘(𝜑𝑥 + 𝜓) − 𝑚𝜃, (1.8)

instead of (1.7). Then, the propagation of dissipativity to the whole terms of the solution is given as in the diagram (see
e.g. [4, Subsect. 3.1]):

𝜃
1st
←←←←←←←←←←←←←→ 𝑆 = 𝑘(𝜑𝑥 + 𝜓)

2nd
←←←←←←←←←←←←←→ 𝑀 = 𝑏𝜓𝑥

whereas in the present work such way for the estimates are not useful. Here the picture is different because the propagation
of the dissipative-estimates walks on the next opposite diagram

𝜃
1st
←←←←←←←←←←←←←→ 𝑀 = 𝑏𝜓𝑥

2nd
←←←←←←←←←←←←←→ 𝑆 = 𝑘(𝜑𝑥 + 𝜓)

as clarified in the computations of Subsection 2.3.

(iv) Last, we would like to remark that a comparison with thermoelastic Timoshenko systems that are governed by different
thermal laws like Cattaneo, Gurtin-Pipkin, Type III, among others, as given e.g. in [11,13,14,29], is more delicate due to
the different character of such systems. However, we believe that the approach on local estimates provided in Section 2
along with the observability result in the Appendix A can be probably applied to these other thermoelastic systems taking
into account different constitutive laws.

2 NON-HOMOGENEOUS THERMOELASTIC SYSTEM

In this section, for 𝑙 > 0 and ℝ+ = (0,∞), we consider the following initial-boundary value problem with non-constant coeffi-
cients

𝜌1𝜑𝑡𝑡 − (𝑘(𝜑𝑥 + 𝜓))𝑥 = 0 in (0, 𝑙) ×ℝ+, (2.1)

𝜌2𝜓𝑡𝑡 − (𝑏𝜓𝑥)𝑥 + 𝑘(𝜑𝑥 + 𝜓) + (𝑚𝜃)𝑥 = 0 in (0, 𝑙) ×ℝ+, (2.2)

𝜌3𝜃𝑡 − (𝑐 𝜃𝑥)𝑥 + 𝑚𝜓𝑥𝑡 = 0 in (0, 𝑙) ×ℝ+, (2.3)

(𝜑(⋅, 0), 𝜑𝑡(⋅, 0), 𝜓(⋅, 0), 𝜓𝑡(⋅, 0), 𝜃(⋅, 0)) = (𝜑0, 𝜑1, 𝜓0, 𝜓1, 𝜃0) in (0, 𝑙), (2.4)

𝜑(0, 𝑡) = 𝜑(𝑙, 𝑡) = 𝜓(0, 𝑡) = 𝜓(𝑙, 𝑡) = 𝜃(0, 𝑡) = 𝜃(𝑙, 𝑡) = 0, 𝑡 ≥ 0, (2.5)

where 𝜌1, 𝜌2, 𝜌3, 𝑘, 𝑏, 𝑐, 𝑚 are functions satisfying

𝜌1, 𝜌2, 𝜌3, 𝑘, 𝑏, 𝑐, 𝑚 ∈ 𝑊 1,∞(0, 𝑙), 𝜌1, 𝜌2, 𝜌3, 𝑘, 𝑏, 𝑐, 𝑚 > 0 in (0, 𝑙). (2.6)

The weak phase space  for solutions of (2.1)–(2.5) is defined by

 = 𝐻1
0 (0, 𝑙) × 𝐿2(0, 𝑙) ×𝐻1

0 (0, 𝑙) × 𝐿2(0, 𝑙) × 𝐿2(0, 𝑙),

endowed with inner-product and norm(
𝑈, 𝑈̃
)
 = ∫

𝑙

0

[
𝜌1ΦΦ̃ + 𝜌2ΨΨ̃ + 𝑏𝜓𝑥𝜓𝑥 + 𝑘(𝜑𝑥 + 𝜓)(𝜑𝑥 + 𝜓̃) + 𝜌3𝜃𝜃

]
𝑑𝑥, (2.7)

‖𝑈‖2 = ∫
𝑙

0

[
𝜌1|Φ|2 + 𝜌2|Ψ|2 + 𝑏|𝜓𝑥|2 + 𝑘|𝜑𝑥 + 𝜓|2 + 𝜌3|𝜃|2]𝑑𝑥, (2.8)
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for all 𝑈 = (𝜑,Φ, 𝜓,Ψ, 𝜃), 𝑈̃ =
(
𝜑̃, Φ̃, 𝜓̃ , Ψ̃, 𝜃

)
∈ , which turns  into a Hilbert space under the assumption (2.6) on the coef-

ficients.

2.1 Semigroup solution
Denoting 𝜑𝑡 = Φ, 𝜓𝑡 = Ψ and 𝑈 = (𝜑,Φ, 𝜓,Ψ, 𝜃), then the system (2.1)–(2.5) can be written as the abstract Cauchy problem

⎧⎪⎨⎪⎩
𝑑

𝑑𝑡
𝑈 = 𝑈, 𝑡 > 0,

𝑈 (0) = (𝜑0, 𝜑1, 𝜓0, 𝜓1, 𝜃0) ∶= 𝑈0,

(2.9)

where  ∶ 𝐷() ⊂  →  is given by

𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ
1
𝜌1

(𝑘(𝜑𝑥 + 𝜓))𝑥

Ψ
1
𝜌2

[
(𝑏𝜓𝑥)𝑥 − 𝑘(𝜑𝑥 + 𝜓) − (𝑚𝜃)𝑥

]
1
𝜌3

[
(𝑐 𝜃𝑥)𝑥 − 𝑚Ψ𝑥

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑈 ∈ 𝐷(), (2.10)

with domain

𝐷() =
(
𝐻2 ∩𝐻1

0
)
(0, 𝑙) ×𝐻1

0 (0, 𝑙) ×
(
𝐻2 ∩𝐻1

0
)
(0, 𝑙) ×𝐻1

0 (0, 𝑙) ×
(
𝐻2 ∩𝐻1

0
)
(0, 𝑙).

The existence and uniqueness result to the Cauchy problem (2.9), and consequently to the equivalent system (2.1)–(2.5), reads
as follows:

Theorem 2.1. Let us assume that condition (2.6) holds.

(i) If 𝑈0 ∈ , then the problem (2.9) has a unique mild solution in the class

𝑈 ∈ 𝐶0([0,∞),).

(ii) If 𝑈0 ∈ 𝐷(), then the above mild solution is regular one and satisfies

𝑈 ∈ 𝐶0([0,∞), 𝐷()) ∩ 𝐶1([0,∞),).

(iii) If 𝑈0 ∈ 𝐷(𝑛), 𝑛 ≥ 2 integer, then the above regular solution satisfies

𝑈 ∈
𝑛⋂

𝑗=0
𝐶𝑛−𝑗
(
[0,+∞), 𝐷

(𝑗
))

.

Proof. It is not difficult to check that 0 ∈ 𝜌(), where 𝜌() stands for the resolvent set of , and a straightforward computation
shows that  is dissipative with

Re(𝑈,𝑈 ) = −∫
𝑙

0
𝑐(𝑥)|𝜃𝑥(𝑥)|2 𝑑𝑥 ≤ 0, 𝑈 ∈ 𝐷(). (2.11)

As a consequence of the Lummer–Philips theorem (cf. [25]),  is the infinitesimal generator of a 𝐶0-semigroup of contractions
𝑇 (𝑡) = 𝑒𝑡 defined in . Therefore, the solution of (2.9) satisfying items (𝑖)–(𝑖𝑖𝑖) is given by

𝑈 (𝑡) = 𝑒𝑡𝑈0, 𝑡 ≥ 0. □
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2.2 Stability results
Next we are going to present our results on stability to the solution 𝑈 (𝑡) = 𝑒𝑡𝑈0 of the problem (2.9), and consequently to the
solution of the system (2.1)–(2.5). Before doing so, we note that to the exponential stability result we assume a local condition
on equal wave speeds like

𝑘(𝑥)
𝜌1(𝑥)

= 𝑏(𝑥)
𝜌2(𝑥)

, for 𝑥 in any open subinterval 𝐼 ⊂ (0, 𝑙). (2.12)

In this section our main stability results are the following:

Theorem 2.2 (Exponential Stability). Let us assume that conditions (2.6) and (2.12) hold. Then, there exist positive constants
𝐶, 𝛾 > 0, independent of the initial data 𝑈0 ∈ , such that

‖𝑈 (𝑡)‖ ≤ 𝐶𝑒−𝛾 𝑡‖𝑈0‖ , 𝑡 > 0. (2.13)

In other words, the non-homogeneous thermoelastic Timoshenko system (2.1)–(2.5) is (uniformly) exponentially stable.

Theorem 2.3 (Polynomial Stability). Let us only suppose that condition (2.6) holds. Then, for every integer 𝑛 ≥ 1, there exists
a constant 𝐶𝑛 > 0, independent of the initial data 𝑈0 ∈ 𝐷(𝑛), such that

‖𝑈 (𝑡)‖ ≤ 𝐶𝑛

𝑡𝑛∕2
‖𝑈0‖𝐷(𝑛), 𝑡 → +∞. (2.14)

In other words, the system (2.1)–(2.5) is (non-uniformly) polynomially stable with rate depending on the regularity of initial data.

The proof of Theorems 2.2 and 2.3 will be conclude later as a consequence of some technical lemmas proved below together
with an observability result for static Timoshenko-type systems, which is presented in the Appendix A, and both combined with
some abstract results in the theory of linear semigroups that can be found in [7,12,15,19,26]. For didactic reasons we are going
to remember such abstract results in the next subsection, but they can be skipped by the readers that are familiar with the subject.

2.2.1 Theoretical results in spectral theory for linear semigroups
The first result is a classical one in the theory of linear semigroups. It characterizes the exponential stability of 𝐶0-semigroups,
see for instance [15,26]. For the sake of simplicity, we recall it by following the presentation to Hilbert spaces, see e.g. Liu and
Zheng [19].

Theorem 2.4 ([19, Theorem 1.3.2]). A 𝐶0-semigroup of contractions 𝑇 (𝑡) = 𝑒𝐴𝑡 over a Hilbert space 𝐻 is exponentially stable
if and only if

𝑖ℝ ⊆ 𝜌(𝐴) and lim sup|𝛽|→∞

‖‖‖(𝑖𝛽𝐼𝑑 − 𝐴
)−1‖‖‖(𝐻)

< ∞, (2.15)

where 𝑖ℝ = {𝑖𝛽 | 𝛽 ∈ ℝ}.

The second result is a summarized version of the general one established by Borichev and Tomilov [7]. It provides somehow
a characterization of polynomial stability for bounded 𝐶0-semigroups defined on Hilbert spaces.

Theorem 2.5 ([7, Theorem 2.4]). Let 𝑇 (𝑡) = 𝑒𝐴𝑡 be a bounded 𝐶0-semigroup on a Hilbert space 𝐻 such that 𝑖ℝ ⊂ 𝜌(𝐴). Then,

‖‖‖𝑇 (𝑡)𝐴−1‖‖‖(𝐻)
= 𝑂
(
𝑡−1∕𝜆
)

if and only if ‖‖‖(𝑖𝛽𝐼𝑑 − 𝐴
)−1‖‖‖(𝐻)

= 𝑂
(|𝛽|𝜆), (2.16)

for 𝑡 → ∞ and |𝛽|→ ∞, and some fixed constant 𝜆 > 0.

Lastly, we observe that the typical condition 𝑖ℝ ⊂ 𝜌(𝐴) usually plays an important role in the stabilization theory for linear
𝐶0-semigroups. Indeed, it is worth mentioning that such condition is required in both Theorems 2.4 and 2.5. Therefore, by
following Engel and Nagel’s book [12], we briefly remind in the next result that it is possible to characterize the spectrum
𝜎(𝐴) = ℂ∖𝜌(𝐴) of linear operators 𝐴 ∶ 𝐷(𝐴) ⊂ 𝑋 → 𝑋 whose domain 𝐷(𝐴) is compactly embedded in a Banach space 𝑋.

Theorem 2.6 ([12, Proposition 5.8 and Corollary 1.15]). Let
(
𝑋, ‖ ⋅ ‖𝑋) be a Banach space and consider 𝐴 ∶ 𝐷(𝐴) ⊂ 𝑋 → 𝑋

a linear operator with nonempty resolvent set 𝜌(𝐴).
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I. 𝐴 has compact resolvent (that is, there exists 𝜆 ∈ 𝜌(𝐴) such that (𝜆𝐼 − 𝐴)−1 is compact) if and only if the canonical injection
𝑖 ∶
(
𝐷(𝐴), ‖ ⋅ ‖𝐷(𝐴)

)
→
(
𝑋, ‖ ⋅ ‖𝑋) is compact.

II. If the operator 𝐴 has compact resolvent, then the spectrum 𝜎(𝐴) consists only of eigenvalues of 𝐴.

2.3 Proofs of the main results: Theorems 2.2 and 2.3
We start by considering the resolvent equation

𝑖𝛽𝑈 −𝑈 = 𝐹 , (2.17)

where 𝑈 = (𝜑,Φ, 𝜓,Ψ, 𝜃), 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5) and  is defined in (2.10), and its component equations

𝑖𝛽𝜑 − Φ = 𝑓1, (2.18)

𝑖𝛽𝜌1Φ − (𝑘(𝜑𝑥 + 𝜓))𝑥 = 𝜌1𝑓2, (2.19)

𝑖𝛽𝜓 − Ψ = 𝑓3, (2.20)

𝑖𝛽𝜌2Ψ − (𝑏𝜓𝑥)𝑥 + 𝑘(𝜑𝑥 + 𝜓) + (𝑚𝜃)𝑥 = 𝜌2𝑓4, (2.21)

𝑖𝛽𝜌3𝜃 − (𝑐 𝜃𝑥)𝑥 + 𝑚Ψ𝑥 = 𝜌3𝑓5. (2.22)

We also observe that the assumption (2.6) implies the existence of constants 𝑐0, 𝑐1 > 0 such that

𝑐0 ≤ 𝜌1, 𝜌2, 𝜌3, 𝑘, 𝑏, 𝑐, 𝑚 ≤ 𝑐1 and 𝜌′1, 𝜌
′
2, 𝜌

′
3, 𝑘

′, 𝑏′, 𝑐′, 𝑚′ ≤ 𝑐1 on (0, 𝑙). (2.23)

Hereafter, to simplify the notations, we shall use the same parameter 𝐶 > 0 to denote several different positive constants in
forthcoming computations and, as usual, ‖ ⋅ ‖𝐿𝑝 stands for the norm in 𝐿𝑝(0, 𝑙). Besides, the well-known Hölder and Poincaré’s
inequalities will be constantly used in the estimates so that we allowed ourselves not to mention them sometimes as well as|𝛽| > 1 will be taken large enough several times without mentioning.

Lemma 2.7. Under the above notations and the assumption (2.6), we have 𝑖ℝ ⊆ 𝜌().

Proof. Since  is closed and 𝐷() is compactly embedded in , then according to Theorem 2.6 (reminded above) the spectrum
𝜎() = ℂ∕𝜌() has only eigenvalues. Let us suppose that there exists a pure imaginary eigenvalue 𝑖𝛽 ≠ 0 with correspond-
ing non-null eigenfunction 𝑈 = (𝜑,Φ, 𝜓,Ψ, 𝜃). Then, from (2.17) with 𝐹 = 0, the dissipativity (2.11) and condition (2.6),
we have 𝜃 ≡ 0, and going back to the system (2.18)–(2.22) with 𝐹 = 0 one gets 𝑈 ≡ 0, which is a contradiction. Therefore,
𝑖ℝ ⊆ 𝜌(). □

Lemma 2.8. Under the above notations and the assumption (2.6), there exists a constant 𝐶 > 0 such that

‖𝜃𝑥‖2𝐿2 ≤ 𝐶‖𝑈‖‖𝐹‖ . (2.24)

Proof. Immediately from (2.17), (2.11) and then (2.23). □

To the next computations, we shall use some useful cut-off functions and a modified “cut-off” resolvent equation to obtain
firstly some local estimates.

Auxiliary cut-off functions 𝑠𝑗 , 𝑗 = 1, 2. Let us consider 𝑙0 ∈ (0, 𝑙) and 𝛿 > 0 arbitrary numbers such that (𝑙0 − 𝛿, 𝑙0 + 𝛿) ⊂
(0, 𝑙) and 𝑠1, 𝑠2 ∈ 𝐶2(0, 𝑙) are cut-off functions satisfying

supp 𝑠𝑗 ⊂ (𝑙0 − 𝛿∕𝑗, 𝑙0 + 𝛿∕𝑗), 0 ≤ 𝑠𝑗(𝑥) ≤ 1, 𝑥 ∈ (0, 𝑙), (2.25)

and

𝑠𝑗(𝑥) = 1 for 𝑥 ∈ [𝑙0 − 𝛿∕(𝑗 + 1), 𝑙0 + 𝛿∕(𝑗 + 1)], 𝑗 = 1, 2. (2.26)

The idea of the graphic for such cut-off functions is disposed in Figure 1 as follows.
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F I G U R E 1 Geometric description of functions 𝑠1 and 𝑠2

Auxiliary resolvent equation. Given 𝑈 = (𝜑,Φ, 𝜓,Ψ, 𝜃) ∈ 𝐷() solution of (2.17), we additionally introduce the following
functions

𝜑𝑗 = 𝑠𝑗𝜑, Φ𝑗 = 𝑠𝑗Φ, 𝜓𝑗 = 𝑠𝑗𝜓, Ψ𝑗 = 𝑠𝑗Ψ, 𝜃𝑗 = 𝑠𝑗𝜃, 𝑗 = 1, 2. (2.27)

Then, for each 𝑗 = 1, 2, we have from (2.18)–(2.22) that the above functions satisfy

𝑖𝛽𝜑𝑗 − Φ𝑗 = 𝑠𝑗𝑓1, (2.28)

𝑖𝛽𝜌1Φ𝑗 −
(
𝑘
(
𝜑𝑗
𝑥 + 𝜓𝑗

))
𝑥
= 𝑠𝑗𝜌1𝑓2 + 𝑉𝑗, (2.29)

𝑖𝛽𝜓𝑗 − Ψ𝑗 = 𝑠𝑗𝑓3, (2.30)

𝑖𝛽𝜌2Ψ𝑗 −
(
𝑏𝜓𝑗

𝑥

)
𝑥
+ 𝑘
(
𝜑𝑗
𝑥 + 𝜓𝑗

)
+
(
𝑚𝜃𝑗
)
𝑥
= 𝑠𝑗𝜌2𝑓4 + 𝑌𝑗, (2.31)

𝑖𝛽𝜌3𝜃
𝑗 −
(
𝑐 𝜃𝑗𝑥
)
𝑥
+ 𝑚Ψ𝑗

𝑥 = 𝑠𝑗𝜌3𝑓5 + Θ𝑗 , (2.32)

where denote

𝑉𝑗 = −
(
𝑠′𝑗𝑘𝜑
)
𝑥
− 𝑠′𝑗𝑘(𝜑𝑥 + 𝜓),

𝑌𝑗 = −𝑠′𝑗𝑏 𝜓𝑥 −
(
𝑠′𝑗𝑏 𝜓
)
𝑥
+ 𝑠′𝑗𝑘𝜑 + 𝑠′𝑗𝑚𝜃, (2.33)

Θ𝑗 = −𝑠′𝑗𝑐 𝜃𝑥 −
(
𝑠′𝑗𝑐 𝜃
)
𝑥
+ 𝑠′𝑗𝑚Ψ.

Remark 2.9. It is worth mentioning that all functions defined in (2.27) (and their derivatives) vanish at the boundary {0, 𝑙}. Thus,
whenever we compute integration by parts with these functions, we have that any pointwise boundary term vanishes as well.
Therefore, in what follows we do not need to be worried about integration by parts and boundary pointwise terms. In addition,
from (2.24) and definition of 𝑠𝑗 we obtain

‖‖𝜃𝑗𝑥‖‖2𝐿2 ≤ 𝐶‖𝜃𝑥‖2𝐿2 ≤ 𝐶‖𝑈‖‖𝐹‖ , (2.34)

and

‖‖‖𝑉𝑗
‖‖‖𝐿2 ,
‖‖‖𝑌𝑗
‖‖‖𝐿2 ,≤ 𝐶‖𝑈‖ ,

‖‖‖Θ𝑗
‖‖‖𝐿2 ≤ 𝐶‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖ , (2.35)

for each 𝑗 = 1, 2, and some constant 𝐶 > 0.
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Lemma 2.10. Under the above notations and the assumption (2.6), there exists a constant 𝐶 > 0 such that

∫
𝑙

0

(|||𝜓1
𝑥
|||2 + |||Ψ1|||2

)
𝑑𝑥 ≤ 𝐶|𝛽|‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2

+ 𝐶|𝛽|‖𝑈‖
(

1|𝛽|1∕2 ‖𝑈‖1∕2 ‖𝜃𝑥‖1∕2𝐿2 + ‖𝑈‖1∕2 ‖𝐹‖1∕2
)

(2.36)

+ 𝐶|𝛽|4∕3 ‖𝑈‖4∕3 ‖𝜃𝑥‖2∕3𝐿2 + 𝐶|𝛽|5∕2 ‖𝑈‖2 .

In particular, given 𝜖 > 0 there exists a constant 𝐶𝜖 > 0 such that

‖‖‖𝜓1
𝑥
‖‖‖2𝐿2 +

‖‖‖Ψ1‖‖‖2𝐿2 ≤ 𝜖|𝛽|𝜈 ‖𝑈‖2 + 𝐶𝜖|𝛽|𝜈‖𝐹‖2 , (2.37)

for 𝜈 = 0 or 𝜈 = 2, and |𝛽| > 1 large enough.

Proof. Let us consider (2.28)–(2.35) with 𝑗 = 1. First of all, from Equations (2.30) and (2.32) we note that

𝜌3𝜃
1 −
(

𝑐

𝑖𝛽
𝜃1𝑥

)
𝑥
+ 𝑚𝜓1

𝑥 = 1
𝑖𝛽

(
𝑚(𝑠1𝑓3)𝑥 + 𝑠1𝜌3𝑓5 + Θ1

)
. (2.38)

Taking the multiplier 𝑏𝜓1
𝑥 in (2.38) and performing integration by parts we get

∫
𝑙

0
𝑚𝑏
|||𝜓1

𝑥
|||2 𝑑𝑥

= ∫
𝑙

0

(
𝜌3𝑏 𝜃

1)
𝑥
𝜓1 𝑑𝑥−∫

𝑙

0

(
𝑐

𝑖𝛽
𝜃1𝑥

)(
𝑏𝜓1

𝑥

)
𝑥
𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐽1

+ 1
𝑖𝛽 ∫

𝑙

0
𝑏Θ1𝜓

1
𝑥 𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐽2

+ 1
𝑖𝛽 ∫

𝑙

0
𝑏
(
𝑚(𝑠1𝑓3)𝑥 + 𝑠1𝜌3𝑓5

)
𝜓1
𝑥 𝑑𝑥. (2.39)

Using (2.31) we rewrite 𝐽1 as

𝐽1 = ∫
𝑙

0

(
𝑐

𝑖𝛽
𝜃1𝑥

)(
𝑖𝛽𝜌2Ψ1 − 𝑘

(
𝜑1
𝑥 + 𝜓1

)
−
(
𝑚𝜃1
)
𝑥
+ 𝑠1𝜌2𝑓4 + 𝑌1

)
𝑑𝑥.

In addition, using the definition of Θ1 in (2.33), integration by parts and Equation (2.22), then 𝐽2 can be rewritten as follows

𝐽2 = − 1
𝑖𝛽 ∫

𝑙

0

(
𝑠′1𝑚𝑏
)′Ψ1𝜓 𝑑𝑥 + 1

𝑖𝛽 ∫
𝑙

0

(
𝑐
(
𝑠′1𝑏
)′
𝜃𝑥𝜓

1 − 𝑏
(
𝑠′1𝑐 𝜃
)
𝑥
𝜓1
𝑥

)
𝑑𝑥

+ ∫
𝑙

0
𝑠′1𝑏𝜌3𝜃𝜓

1 𝑑𝑥 − 1
𝑖𝛽 ∫

𝑙

0
𝑠′1𝑏𝜌3𝑓5𝜓

1 𝑑𝑥.

Replacing these two last identities in (2.39) we deduce

∫
𝑙

0
𝑚𝑏
|||𝜓1

𝑥
|||2 𝑑𝑥 =∫

𝑙

0
𝜌2𝑐 𝜃

1
𝑥Ψ1𝑑𝑥 − 1

𝑖𝛽 ∫
𝑙

0

(
𝑠′1𝑚𝑏
)′Ψ1𝜓 𝑑𝑥 + ∫

𝑙

0
𝑠′1𝜌3𝑏 𝜃𝜓

1 𝑑𝑥 + 𝐽3, (2.40)

where

𝐽3 = ∫
𝑙

0

(
𝜌3𝑏 𝜃

1)
𝑥
𝜓1 𝑑𝑥 + 1

𝑖𝛽 ∫
𝑙

0
𝑐 𝜃1𝑥

(
−𝑘
(
𝜑1
𝑥 + 𝜓1

)
−
(
𝑚𝜃1
)
𝑥
+ 𝑠1𝜌2𝑓4 + 𝑌1

)
𝑑𝑥

+ 1
𝑖𝛽 ∫

𝑙

0

(
𝑐
(
𝑠′1𝑏
)′
𝜃𝑥𝜓

1 − 𝑏
(
𝑠′1𝑐 𝜃
)
𝑥
𝜓1
𝑥

)
𝑑𝑥 − 1

𝑖𝛽 ∫
𝑙

0
𝑠′1𝑏𝜌3𝑓5𝜓

1 𝑑𝑥 + 1
𝑖𝛽 ∫

𝑙

0
𝑏
(
𝑚(𝑠1𝑓3)𝑥 + 𝑠1𝜌3𝑓5

)
𝜓1
𝑥 𝑑𝑥.

From Equation (2.30), and estimates (2.34)–(2.35), we infer

|𝐽3| ≤ 𝐶|𝛽|‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 ,
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for some constant 𝐶 > 0. Going back to (2.40), using the Young inequality, Equation (2.20) and estimates (2.23)–(2.24), we
arrive at

∫
𝑙

0

|||𝜓1
𝑥
|||2 𝑑𝑥 ≤ 𝐶‖𝜃𝑥‖𝐿2

‖‖‖Ψ1‖‖‖𝐿2 +
𝐶|𝛽|2 ‖𝑈‖‖‖‖Ψ1‖‖‖𝐿2 +

𝐶|𝛽|‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 . (2.41)

On the other hand, taking the multiplier −𝜓1 in (2.31), using integration by parts, Equation (2.30) and the definition of 𝑌1 in
(2.33), we have

∫
𝑙

0
𝜌2
|||Ψ1|||2 𝑑𝑥 = ∫

𝑙

0

(
𝑏
|||𝜓1

𝑥
|||2 + 𝑘

|||𝜓1|||2
)

𝑑𝑥 + 𝐽4 + 𝐽5, (2.42)

where

𝐽4 = ∫
𝑙

0
𝑠
((

𝑚𝜃1
)
𝑥
− 𝑠′1𝑚𝜃 − 𝑠1𝜌2𝑓4

)
𝜓 𝑑𝑥 − ∫

𝑙

0
𝑠1𝜌2Ψ1𝑓3 𝑑𝑥,

𝐽5 = ∫
𝑙

0

(
𝑘𝜑1

𝑥 + 2
(
𝑠′1𝑏𝜓

)
𝑥

)
𝜓1 𝑑𝑥 − ∫

𝑙

0

((
𝑠′1𝑏
)′
𝜓 + 𝑠′1𝑘𝜑

)
𝜓1 𝑑𝑥.

From Equation (2.20) and estimate (2.34), it follows that

|𝐽4| ≤ 𝐶|𝛽|‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 ,

for some constant 𝐶 > 0. In addition, using integration by parts, Equations (2.18), (2.20), (2.28), and estimate (2.41), we see
that

|𝐽5| ≤ 𝐶|𝛽|‖𝑈‖‖‖‖𝜓1
𝑥
‖‖‖𝐿2 +

𝐶|𝛽|‖𝑈‖‖𝐹‖
≤ 𝐶|𝛽|‖𝑈‖

(
1|𝛽|1∕2 ‖𝑈‖1∕2 ‖𝜃𝑥‖1∕2𝐿2 + ‖𝑈‖1∕2 ‖𝐹‖1∕2

)
+ 𝐶|𝛽|‖𝑈‖‖𝜃𝑥‖1∕2𝐿2

‖‖‖Ψ1‖‖‖1∕2𝐿2 + 𝐶|𝛽|2 ‖𝑈‖3∕2
‖‖‖Ψ1‖‖‖1∕2𝐿2 + 𝐶|𝛽|‖𝑈‖‖𝐹‖ .

Replacing these last two estimates in (2.42), taking into account the Poincaré inequality and (2.41), using proper Young inequal-
ities and (2.23)–(2.24) we obtain

∫
𝑙

0

|||Ψ1|||2 𝑑𝑥 ≤ 𝐶|𝛽|‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2
+ 𝐶|𝛽|‖𝑈‖

(
1|𝛽|1∕2 ‖𝑈‖1∕2 ‖𝜃𝑥‖1∕2𝐿2 + ‖𝑈‖1∕2 ‖𝐹‖1∕2

)
+ 𝐶|𝛽|4∕3 ‖𝑈‖4∕3 ‖𝜃𝑥‖2∕3𝐿2 + 𝐶|𝛽|5∕2 ‖𝑈‖2 , (2.43)

where we use |𝛽|4 > |𝛽|8∕3 > |𝛽|5∕2 > 1. Finally, adding (2.41) and (2.43), using again the Young inequality and (2.24), we
obtain (2.36). In particular, applying once more the Young inequality with 𝜖 > 0 and (2.24), and taking |𝛽| > 1 large enough,
then the estimate (2.37) follows. □

Lemma 2.11. Under the above notations and the assumption (2.6), there exists a constant 𝐶 > 0 such that

∫
𝑙

0

(|||𝜑2
𝑥 + 𝜓2|||2 + |||Φ2|||2

)
𝑑𝑥 ≤ 𝐶 ∫

𝑙

0
||𝑏𝜌1 − 𝑘𝜌2|||||Ψ2

𝑥
||||||Φ2||| 𝑑𝑥 + 𝐶‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖(‖‖‖𝜓1

𝑥
‖‖‖𝐿2 +

‖‖‖Ψ1‖‖‖𝐿2

)
+𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 + 𝐶|𝛽|‖𝑈‖2 . (2.44)
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Proof. Let us consider (2.28)–(2.35) with 𝑗 = 2. Multiplying (2.31) by 𝑘
(
𝜑2
𝑥 + 𝜓2

)
and integrating over (0, 𝑙) we get

∫
𝑙

0
𝑘2
|||𝜑2

𝑥 + 𝜓2|||2 𝑑𝑥 = ∫
𝑙

0
𝜌2𝑘Ψ2(𝑖𝛽(𝜑2

𝑥 + 𝜓2
))

𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐽6

+∫
𝑙

0
𝑘
(
𝑏𝜓2

𝑥

)
𝑥

(
𝜑2
𝑥 + 𝜓2

)
𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐽7

+ ∫
𝑙

0
𝑘
(
𝑠2𝜌2𝑓4 −

(
𝑚𝜃2
)
𝑥
+ 𝑠′2𝑚𝜃

)(
𝜑2
𝑥 + 𝜓2

)
𝑑𝑥 (2.45)

− ∫
𝑙

0
𝑘
(
𝑠′2𝑏𝜓𝑥 +

(
𝑠′2𝑏𝜓

)
𝑥

)(
𝜑2
𝑥 + 𝜓2

)
𝑑𝑥 + ∫

𝑙

0
𝑠′2𝑘

2𝜑
(
𝜑2
𝑥 + 𝜓2

)
𝑑𝑥,

where we use the expression for 𝑌2 given in (2.33). Now let us rewrite the terms 𝐽6 and 𝐽7 as follows. Indeed, using Equa-
tions (2.28)–(2.30) and integration by parts we have

𝐽6 = − ∫
𝑙

0
𝜌2𝑘Ψ2

𝑥Φ2 𝑑𝑥 − ∫
𝑙

0
(𝜌2𝑘)′Ψ2Φ2 𝑑𝑥 + ∫

𝑙

0
𝜌2𝑘
|||Ψ2|||2 𝑑𝑥 + ∫

𝑙

0
𝜌2𝑘Ψ2

((
𝑠2𝑓1
)
𝑥
+ 𝑠2𝑓3

)
𝑑𝑥,

and

𝐽7 = ∫
𝑙

0
𝜌1𝑏Ψ2

𝑥Φ2 𝑑𝑥 + ∫
𝑙

0
𝜌1𝑏 (𝑠2𝑓3)𝑥Φ2 𝑑𝑥 + ∫

𝑙

0
𝑠2𝜌1𝑏𝜓

2
𝑥𝑓2 𝑑𝑥 + ∫

𝑙

0
𝑏𝜓2

𝑥𝑉2 𝑑𝑥.

Replacing these last two equalities in (2.45) we obtain

∫
𝑙

0
𝑘2
|||𝜑2

𝑥 + 𝜓2|||2 𝑑𝑥 =∫
𝑙

0
(𝜌1𝑏 − 𝜌2𝑘) Ψ2

𝑥Φ2 𝑑𝑥 + 𝐽8 + 𝐽9 + 𝐽10 + 𝐽11, (2.46)

where

𝐽8 = ∫
𝑙

0
𝜌2𝑘Ψ2

((
𝑠2𝑓1
)
𝑥
+ 𝑠2𝑓3

)
𝑑𝑥 + ∫

𝑙

0
𝜌1𝑏 (𝑠2𝑓3)𝑥Φ2 𝑑𝑥 + ∫

𝑙

0
𝑠2𝜌1𝑏𝜓

2
𝑥𝑓2 𝑑𝑥

+ ∫
𝑙

0
𝑘
(
𝑠2𝜌2𝑓4 −

(
𝑚𝜃2
)
𝑥
+ 𝑠′2𝑚𝜃

)(
𝜑2
𝑥 + 𝜓2

)
𝑑𝑥,

𝐽9 = ∫
𝑙

0
𝑏𝜓2

𝑥𝑉2 𝑑𝑥 − ∫
𝑙

0
𝑘
(
𝑠′2𝑏𝜓𝑥 + (𝑠′2𝑏𝜓)𝑥

)(
𝜑2
𝑥 + 𝜓2

)
𝑑𝑥,

𝐽10 = ∫
𝑙

0
Ψ2
(
𝜌2𝑘Ψ2 − (𝜌2𝑘)′Φ2

)
𝑑𝑥,

𝐽11 = ∫
𝑙

0
𝑠′2𝑘

2𝜑
(
𝜑2
𝑥 + 𝜓2

)
𝑑𝑥.

It is easy to see that there exists a constant 𝐶 > 0 such that

|𝐽8| ≤ 𝐶‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ .

Also, from conditions (2.25)–(2.26) on 𝑠𝑗 , 𝑗 = 1, 2, and the estimate (2.35), we obtain

|𝐽9| + |𝐽10| ≤ 𝐶‖𝑈‖(‖‖‖𝜓1
𝑥
‖‖‖𝐿2 +

‖‖‖Ψ1‖‖‖𝐿2

)
.

In addition, integrating by parts and by using Equations (2.18) and (2.20), we infer

|Re 𝐽11| ≤ 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 + 𝐶|𝛽|2 ‖𝑈‖2 .
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Going back to (2.46) and taking the real part, inserting these three last estimates and by using (2.23), we arrive at

∫
𝑙

0

|||𝜑2
𝑥 + 𝜓2|||2 𝑑𝑥 ≤ 𝐶 ∫

𝑙

0
|𝜌1𝑏 − 𝜌2𝑘| |||Ψ2

𝑥
||| |||Φ2||| 𝑑𝑥 + 𝐶‖𝑈‖(‖‖‖𝜓1

𝑥
‖‖‖𝐿2 +

‖‖‖Ψ1‖‖‖𝐿2

)
+ 𝐶‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 + 𝐶|𝛽|2 ‖𝑈‖2 . (2.47)

On the other hand, taking the multiplier −𝜑2 in (2.29), performing integration by parts and using (2.28), we can write

∫
𝑙

0
𝜌1
|||Φ2|||2 𝑑𝑥 = ∫

𝑙

0
𝑘
|||𝜑2

𝑥 + 𝜓2|||2 𝑑𝑥 + 𝐽12, (2.48)

where

𝐽12 = −∫
𝑙

0
𝑠2𝜌1𝑓2 𝜑

2 𝑑𝑥 − ∫
𝑙

0
𝑠2𝜌1Φ2𝑓1 𝑑𝑥 − ∫

𝑙

0
𝑘
(
𝜑2
𝑥 + 𝜓2)𝜓2 𝑑𝑥 − ∫

𝑙

0
𝑉2𝜑

2 𝑑𝑥,

by adding and subtracting ∫ 𝑙
0 𝑘
(
𝜑2
𝑥 + 𝜓2)𝜓2 𝑑𝑥. Then, from Equations (2.28) and (2.30), and the estimate (2.35), it follows that

|𝐽12| ≤ 𝐶‖𝑈‖‖𝐹‖ + 𝐶|𝛽|‖𝑈‖2 ,

for some constant 𝐶 > 0. Inserting this estimate in (2.48), by using (2.47) and (2.23) we obtain

∫
𝑙

0

|||Φ2|||2 𝑑𝑥 ≤ 𝐶 ∫
𝑙

0
|𝜌1𝑏 − 𝜌2𝑘| |||Ψ2

𝑥
||| |||Φ2||| 𝑑𝑥 + 𝐶‖𝑈‖(‖‖‖𝜓1

𝑥
‖‖‖𝐿2 +

‖‖‖Ψ1‖‖‖𝐿2

)
+ 𝐶‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 + 𝐶|𝛽|‖𝑈‖2 , (2.49)

where |𝛽|2 > |𝛽| > 1 is assumed. Therefore, combining (2.47) and (2.49) we conclude (2.44). □

Now is the precise moment where we apply the observability result given by Corollary A.2 (see Appendix A) to extend the
localized estimates (Lemmas 2.10 and 2.11) to a global estimate on (0, 𝑙) for the resolvent solution 𝑈 = (𝜑,Φ, 𝜓,Ψ, 𝜃). More
precisely, we have:

Proposition 2.12. Under the above notations and the assumption (2.6), there exists a constant 𝐶 > 0 such that

‖𝑈‖2 ≤ 𝐶 ∫
𝑙0+𝛿∕2

𝑙0−𝛿∕2
||𝑏𝜌1 − 𝑘𝜌2||2|||Ψ2

𝑥
|||2 𝑑𝑥 + 𝐶

(‖‖‖𝜓1
𝑥
‖‖‖2𝐿2 +

‖‖‖Ψ1‖‖‖2𝐿2

)
+ 𝐶‖𝐹‖2 . (2.50)

Proof. Keeping in mind the conditions (2.25)–(2.26) on 𝑠𝑗 , 𝑗 = 1, 2, and remembering the definitions in (2.27), we deduce from
(2.36) and (2.44) the following estimate

∫
𝑙0+𝛿∕3

𝑙0−𝛿∕3

(|𝜓𝑥|2 + |Ψ|2 + |𝜑𝑥 + 𝜓|2 + |Φ|2) 𝑑𝑥 ≤ Λ̃, (2.51)

where

Λ̃ ∶= 𝐶 ∫
𝑙

0
||𝑏𝜌1 − 𝑘𝜌2|||||Ψ2

𝑥
||| |||Φ2||| 𝑑𝑥 + 𝐶‖𝑈‖‖𝜃𝑥‖𝐿2 + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2

+ 𝐶‖𝑈‖(‖‖‖𝜓1
𝑥
‖‖‖𝐿2 +

‖‖‖Ψ1‖‖‖𝐿2

)
+ 𝐶

(‖‖‖𝜓1
𝑥
‖‖‖2𝐿2 +

‖‖‖Ψ1‖‖‖2𝐿2

)
+ 𝐶|𝛽|‖𝑈‖2 .

Now, from Equations (2.18)–(2.21) one sees that (𝜑,Φ, 𝜓,Ψ) satisfies (A.1)–(A.4) with

𝑔1 ∶= 𝑓1, 𝑔2 ∶= 𝜌1𝑓2, 𝑔3 ∶= 𝑓3, 𝑔4 ∶= 𝜌2𝑓4 − [𝑚𝜃]𝑥,
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F I G U R E 2 Geometric idea of the condition (2.53)

and also from (2.51) one has that (A.8) is verified with 𝑎1 = 𝑙0 − 𝛿∕3 and 𝑎2 = 𝑙0 + 𝛿∕3. Therefore, Corollary A.2 and (2.24)
imply that

∫
𝑙

0

(|𝜓𝑥|2 + |Ψ|2 + |𝜑𝑥 + 𝜓|2 + |Φ|2) 𝑑𝑥 ≤ 𝐶Λ̃ + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 . (2.52)

Combining (2.24) with (2.52), and recalling (2.23), we obtain

‖𝑈‖2 ≤ 𝐶Λ̃ + 𝐶‖𝑈‖‖𝐹‖ + 𝐶‖𝐹‖2 ,

from where one concludes (2.50) after applying Hölder and Young’s inequalities, (2.24) and choosing |𝛽| > 1 large enough. □

3 COMPLETION OF THE PROOF OF THEOREM 2.2 (EXPONENTIAL
STABILITY)

The theoretical result for the conclusion of Theorem 2.2 is recalled in Theorem 2.4. Accordingly, the first part of the nec-
essary condition (2.15) was proved in Lemma 2.7. Now, let 𝜖 > 0 be given and let us choose 𝑙0 ∈ 𝐼 and 𝛿 > 0 such that
(𝑙0 − 𝛿, 𝑙0 + 𝛿)⊂𝐼 as taken in (2.12). Thus,

𝑏(𝑥)𝜌1(𝑥) − 𝑘(𝑥)𝜌2(𝑥) = 0 for all 𝑥 ∈ (𝑙0 − 𝛿, 𝑙0 + 𝛿). (2.53)

See Figure 2.
From Proposition 2.12 and Lemma 2.10 (see (2.37) with 𝜈 = 0) we have

‖𝑈‖2 ≤ 𝜖‖𝑈‖2 + 𝐶𝜖‖𝐹‖2 .

Therefore, taking 𝜖 > 0 small enough, there exists a constant 𝐶 > 0 such that

‖𝑈‖ ≤ 𝐶‖𝐹‖ , |𝛽| → ∞,

and from the resolvent equation (2.17) we conclude‖‖‖(𝑖𝛽𝐼𝑑 −)−1𝐹‖‖‖ ≤ 𝐶‖𝐹‖ , |𝛽| → ∞.

This shows the second property of condition (2.15). Hence, the conclusion of Theorem 2.2 follows from Theorem 2.4. □

4 COMPLETION OF THE PROOF OF THEOREM 2.3 (POLYNOMIAL
STABILITY)

The abstract result for the conclusion of the proof of Theorem 2.3 is based on the polynomial stability of bounded semigroups,
as regarded in Theorem 2.5.

We begin by taking an arbitrary interval (𝑙0 − 𝛿, 𝑙0 + 𝛿) ⊂ (0, 𝑙) and 𝜖 > 0. From Proposition 2.12, Equation (2.30), conditions
(2.25)–(2.26) on 𝑠𝑗 , 𝑗 = 1, 2, and Lemma 2.10 (see (2.37) with 𝜈 = 0 and 𝜈 = 2) yield

‖𝑈‖2 ≤ 𝐶|𝛽|2‖‖‖𝜓1
𝑥
‖‖‖2𝐿2 + 𝐶

(‖‖‖𝜓1
𝑥
‖‖‖2𝐿2 +

‖‖‖Ψ1‖‖‖2𝐿2

)
+ 𝐶‖𝐹‖2 ≤ 𝜖 𝐶‖𝑈‖2 + 𝐶𝜖|𝛽|4‖𝐹‖2 ,
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for some constant 𝐶 > 0. Thus, choosing 𝜖 > 0 small enough, there exists a constant 𝐶 > 0 such that

‖𝑈‖ ≤ 𝐶 |𝛽|2‖𝐹‖ , |𝛽| → ∞.

From the resolvent equation (2.17) we conclude

‖‖‖(𝑖𝛽𝐼𝑑 −)−1𝐹‖‖‖ ≤ 𝐶 |𝛽|2‖𝐹‖ , |𝛽| → ∞.

This shows the necessary assumption in the condition (2.16) with 𝜆 = 2 and so applying Theorem 2.5 one has

‖‖‖𝑒𝑡−1‖‖‖()
≤ 𝐶

𝑡1∕2
, 𝑡 → ∞,

which in turn implies that the semigroup solution 𝑈 (𝑡) = 𝑒𝑡𝑈0 decays as

‖𝑈 (𝑡)‖ ≤ 𝐶

𝑡1∕2
‖𝑈0‖𝐷().

This proves (2.14) with 𝑛 = 1 and initial data 𝑈0 ∈ 𝐷(). The remaining decay rates in (2.14) follows from induction over 𝑛 ≥ 2
and the regularity of initial data. This completes the proof of Theorem 2.3. □

5 HOMOGENEOUS THERMOELASTIC SYSTEM

In this section we are going to see another application of the observability inequality provided in Appendix A. More precisely,
we shall prove that the rates of stability of the thermoelastic Timoshenko system depend on the equal wave speeds assumption,
but are independent of boundary conditions in each related (exponential or polynomial) cases. The optimality of polynomial
decay is also considered in some specific situations.

In order to simplify the notations, we consider hereafter the thermoelastic system (2.1)–(2.3) with constant (homogeneous)
coefficients. In such a direction, we consider the next system

𝜌1𝜑𝑡𝑡 − 𝑘(𝜑𝑥 + 𝜓)𝑥 = 0 in (0, 𝑙) ×ℝ+, (3.1)

𝜌2𝜓𝑡𝑡 − 𝑏𝜓𝑥𝑥 + 𝑘(𝜑𝑥 + 𝜓) + 𝑚𝜃𝑥 = 0 in (0, 𝑙) ×ℝ+, (3.2)

𝜌3𝜃𝑡 − 𝑐 𝜃𝑥𝑥 + 𝑚𝜓𝑥𝑡 = 0 in (0, 𝑙) ×ℝ+, (3.3)

with initial conditions

𝜑(⋅, 0) = 𝜑0, 𝜑𝑡(⋅, 0) = 𝜑1, 𝜓(⋅, 0) = 𝜓0, 𝜓𝑡(⋅, 0) = 𝜓1, 𝜃(⋅, 0) = 𝜃0 in (0, 𝑙), (3.4)

and Dirichlet or mixed Dirichlet–Neumann boundary conditions given by

(1) 𝜑(0, 𝑡) = 𝜑(𝑙, 𝑡) = 𝜓(0, 𝑡) = 𝜓(𝑙, 𝑡) = 𝜃(0, 𝑡) = 𝜃(𝑙, 𝑡) = 0, 𝑡 ≥ 0,
(2) 𝜑𝑥(0, 𝑡) = 𝜑𝑥(𝑙, 𝑡) = 𝜓(0, 𝑡) = 𝜓(𝑙, 𝑡) = 𝜃(0, 𝑡) = 𝜃(𝑙, 𝑡) = 0, 𝑡 ≥ 0,
(3) 𝜑(0, 𝑡) = 𝜑(𝑙, 𝑡) = 𝜓𝑥(0, 𝑡) = 𝜓𝑥(𝑙, 𝑡) = 𝜃(0, 𝑡) = 𝜃(𝑙, 𝑡) = 0, 𝑡 ≥ 0,
(4) 𝜑(0, 𝑡) = 𝜑(𝑙, 𝑡) = 𝜓(0, 𝑡) = 𝜓(𝑙, 𝑡) = 𝜃𝑥(0, 𝑡) = 𝜃𝑥(𝑙, 𝑡) = 0, 𝑡 ≥ 0,
(5) 𝜑𝑥(0, 𝑡) = 𝜑𝑥(𝑙, 𝑡) = 𝜓(0, 𝑡) = 𝜓(𝑙, 𝑡) = 𝜃𝑥(0, 𝑡) = 𝜃𝑥(𝑙, 𝑡) = 0, 𝑡 ≥ 0.

(3.5)

It is worth pointing out that the problem (3.1)–(3.5) has the same characteristic as (2.1)–(2.5), being a particular case when
one considers the boundary condition (3.5)1. In addition, as it will be clarified below, the main core in computations is not
changed so that all results on stability (Theorems 2.2 and 2.3) remain unchanged. The only change falls on the spaces to approach
different boundary conditions.
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5.1 Semigroup solution
To address all boundary conditions in (3.5), we consider the following phase spaces

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐻1
0 (0, 𝑙) × 𝐿2(0, 𝑙) ×𝐻1

0 (0, 𝑙) × 𝐿2(0, 𝑙) × 𝐿2(0, 𝑙) for (3.5)1,
𝐻1

∗ (0, 𝑙) × 𝐿2
∗(0, 𝑙) ×𝐻1

0 (0, 𝑙) × 𝐿2(0, 𝑙) × 𝐿2(0, 𝑙) for (3.5)2,
𝐻1

0 (0, 𝑙) × 𝐿2(0, 𝑙) ×𝐻1
∗ (0, 𝑙) × 𝐿2

∗(0, 𝑙) × 𝐿2(0, 𝑙) for (3.5)3,
𝐻1

0 (0, 𝑙) × 𝐿2(0, 𝑙) ×𝐻1
0 (0, 𝑙) × 𝐿2(0, 𝑙) × 𝐿2

∗(0, 𝑙) for (3.5)4,
𝐻1

∗ (0, 𝑙) × 𝐿2
∗(0, 𝑙) ×𝐻1

0 (0, 𝑙) × 𝐿2(0, 𝑙) × 𝐿2
∗(0, 𝑙) for (3.5)5,

under the same inner product and norm as defined in (2.7) and (2.8), respectively, where 𝐻1
∗ (0, 𝑙) = 𝐻1(0, 𝑙) ∩ 𝐿2

∗(0, 𝑙) and

𝐿2
∗(0, 𝑙) =

{
𝑢 ∈ 𝐿2(0, 𝑙); 1

𝑙
∫ 𝑙
0 𝑢(𝑥) 𝑑𝑥 = 0

}
.

In the present case, problem (3.1)–(3.5) can be rewritten as follows

{
𝑈𝑡 =  𝑈, 𝑡 > 0,
𝑈 (0) ∶= 𝑈0 = (𝜑0, 𝜑1, 𝜓0, 𝜓1, 𝜃0),

(3.6)

where  ∶ 𝐷
(

)
⊂  →  is given by

𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ
𝑘

𝜌1
(𝜑𝑥 + 𝜓)𝑥

Ψ
𝑏

𝜌2
𝜓𝑥𝑥 −

𝑘

𝜌2
(𝜑𝑥 + 𝜓) − 𝑚

𝜌2
𝜃𝑥

𝑐

𝜌3
𝜃𝑥𝑥 −

𝑚

𝜌3
Ψ𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.7)

for all 𝑈 = (𝜑,Φ, 𝜓,Ψ, 𝜃) in the domain

𝐷
(

)
=
{
𝑈 ∈  | 𝜑,𝜓, 𝜃 ∈ 𝐻2(0, 𝑙) and (𝑛) is satisfied

}
,

with (𝑛), 𝑛 = 1,…5, being given by

(𝑛) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ,Ψ, 𝜃 ∈ 𝐻1
0 (0, 𝑙) for (3.5)1,

Ψ, 𝜑𝑥, 𝜃 ∈ 𝐻1
0 (0, 𝑙), Φ ∈ 𝐻1

∗ (0, 𝑙) for (3.5)2,
Φ, 𝜓𝑥, 𝜃 ∈ 𝐻1

0 (0, 𝑙), Ψ ∈ 𝐻1
∗ (0, 𝑙) for (3.5)3,

Φ,Ψ, 𝜃𝑥 ∈ 𝐻1
0 (0, 𝑙) for (3.5)4,

Ψ, 𝜑𝑥, 𝜃𝑥 ∈ 𝐻1
0 (0, 𝑙),Φ ∈ 𝐻1

∗ (0, 𝑙) for (3.5)5.

(3.8)

Under the above notations, the operator  defined in (3.7) is dissipative in  with

Re
(𝑈,𝑈

)
 = −𝑐‖𝜃𝑥‖2𝐿2 ≤ 0, 𝑈 ∈ 𝐷

(
)
, (3.9)

independently of the boundary conditions (1)–(5) in (3.5). Hence, the existence and uniqueness result to the abstract
Cauchy problem (3.6) is stated analogously to Theorem 2.1. In conclusion, the system (3.1)–(3.5) is then well posed.
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5.2 Stability results
In the case of homogeneous coefficients the condition (2.12) reduces to 𝑘

𝜌1
= 𝑏

𝜌2
. Thus, the stability of the system (3.1)–(3.5)

will depend of the number

𝜒 ∶=
𝜌1
𝑘

−
𝜌2
𝑏
. (3.10)

In the present section our main stability results read as follows:

Theorem 3.1 (Exponential Stability). Let us assume in (3.10) that 𝜒 = 0. Then, there exist constants 𝐶, 𝛾 > 0, independent of
the initial data 𝑈0 ∈ , such that the semigroup solution 𝑈 (𝑡) = 𝑒 𝑡𝑈0 of (3.6) satisfies

‖𝑈 (𝑡)‖ ≤ 𝐶𝑒−𝛾 𝑡‖𝑈0‖ , 𝑡 > 0. (3.11)

In other words, the homogeneous system (3.1)–(3.5) is exponentially stable.

Theorem 3.2 (Polynomial Stability). Let us assume in (3.10) that 𝜒 ≠ 0. Then, there exists a constant 𝐶𝑚 > 0 independent of
the initial data 𝑈0 ∈ 𝐷

(
()𝑚

)
, 𝑚 ≥ 1 integer, such that the solution 𝑈 (𝑡) = 𝑒 𝑡𝑈0 satisfies

‖𝑈 (𝑡)‖ ≤ 𝐶𝑚

𝑡𝑚∕2
‖𝑈0‖𝐷(( )𝑚), 𝑡 → +∞. (3.12)

In other words, the homogeneous system (3.1)–(3.5) is polynomially stable with rate depending on the regularity of initial data.

The proofs of Theorems 3.1 and 3.2 follow verbatim the same arguments as in the proofs of Theorems 2.2 and 2.3 provided
along the Section 2.3.

5.3 Optimality
In order to fix the ideas, let us deal with the problem (3.1)–(3.4) under the boundary condition (3.5)3. Then, by taking 𝜒 ≠ 0
and fixing 𝑈0 ∈ 𝐷

(
)
, we get from Theorem 3.2 that

‖𝑈 (𝑡)‖ ≤ 𝐶

𝑡1∕2
‖𝑈0‖𝐷( ), 𝑡 → +∞. (3.13)

In what follows, we are going to conclude that the decay rate 𝑡−1∕2 in (3.13) is optimal. Such a statement will also allow us to
conclude lack of exponential stability as well. More precisely, we have:

Theorem 3.3 (Optimality). Under the above notations, the polynomial decay rate 𝑡−1∕2 in (3.13) is optimal. In particular, the
system (3.1)–(3.4) with boundary condition (3.5)3 is not exponentially stable when 𝜒 ≠ 0.

Proof. Let us consider 𝜒 ≠ 0 and fix 𝑈0 ∈ 𝐷
(

)
for (3) in (3.8). In order to prove the desired optimality, we shall argue

by contraction.
Suppose the decay rate 𝑡−1∕2 in (3.13) can be improved to 𝑡−1∕(2−𝜈) for some 𝜈 ∈ (0, 2). Then there exists a constant 𝐶 > 0

such that ‖‖‖𝑒 𝑡(
)−1‖‖‖()

≤ 𝐶

𝑡1∕(2−𝜈) , 𝑡 → ∞,

and from Theorem 2.5 we get

1|𝛽|2−𝜈

‖‖‖(𝑖𝛽𝐼𝑑 −
)−1‖‖‖()

≤ 𝐶, |𝛽|→ ∞. (3.14)

On the other hand, if we find sequences (𝛽𝜇)𝜇∈ℕ ⊂ ℝ+ and (𝐹𝜇)𝜇∈ℕ ⊂  satisfying lim𝜇→∞ 𝛽𝜇 = ∞ and ‖𝐹𝜇‖ ≤ 1, such
that

lim
𝜇→+∞

1|𝛽𝜇|2−𝜈

‖‖‖(𝑖𝛽𝜇𝐼𝑑 −
)−1

𝐹𝜇
‖‖‖ = +∞, (3.15)

then the contraction is reached through (3.14) and (3.15).
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It remains to show (3.15). To this end, we assume (without loss of generality) that 𝑙 = 𝜋 and take 𝐹𝜇 ∈  as

𝐹𝜇(𝑥) =
(
0, 1

𝜌1
sin(𝜇𝑥), 0, 1

𝜌2
cos(𝜇𝑥), 1

𝜌3
sin(𝜇𝑥)

)
.

It is easy to verify that ‖𝐹𝜇‖ ≤ 1 for all 𝜇 ≥ 4. In addition, the corresponding resolvent equation(
𝑖𝛽𝐼𝑑 −

)
𝑈𝜇 = 𝐹𝜇 ⇔ 𝑈𝜇 =

(
𝑖𝛽𝐼𝑑 −

)−1
𝐹𝜇 (3.16)

can be rewritten in terms of its components as follows

𝑖𝛽𝜑 − Φ = 0,

𝑖𝛽𝜌1Φ − 𝑘(𝜑𝑥 + 𝜓)𝑥 = sin(𝜇𝑥),

𝑖𝛽𝜓 − Ψ = 0,

𝑖𝛽𝜌2Ψ − 𝑏𝜓𝑥𝑥 + 𝑘(𝜑𝑥 + 𝜓) + 𝑚𝜃𝑥 = cos(𝜇𝑥),

𝑖𝛽𝜌3𝜃 − 𝑐 𝜃𝑥𝑥 + 𝑚Ψ𝑥 = sin(𝜇𝑥),

where we still denote 𝑈𝜇 ∶= (𝜑,Φ, 𝜓,Ψ, 𝜃) to simplify the notation. From the first and third equations of the above system one
obtains the reduced system in terms of 𝜑, 𝜓 and 𝜃

− 𝛽2𝜌1𝜑 − 𝑘(𝜑𝑥 + 𝜓)𝑥 = sin(𝜇𝑥),

−𝛽2𝜌2𝜓 − 𝑏𝜓𝑥𝑥 + 𝑘(𝜑𝑥 + 𝜓) + 𝑚𝜃𝑥 = cos(𝜇𝑥), (3.17)

𝑖𝛽𝜌3𝜃 − 𝑐 𝜃𝑥𝑥 + 𝑖𝛽𝑚𝜓𝑥 = sin(𝜇𝑥).

In view of the boundary condition (3.5)3 we look for solutions of (3.17) of the form

𝜑(𝑥) = 𝐴 sin(𝜇𝑥), 𝜓(𝑥) = 𝐵 cos(𝜇𝑥), 𝜃(𝑥) = 𝐶 sin(𝜇𝑥), 𝑥 ∈ [0, 𝜋],

where 𝐴 = 𝐴𝜇, 𝐵 = 𝐵𝜇 and 𝐶 = 𝐶𝜇 will be determined later. In this way, to solve (3.17) is equivalent to find a solution (𝐴,𝐵, 𝐶)
for the algebraic system (

−𝛽2𝜌1 + 𝑘𝜇2)𝐴 + 𝑘𝜇𝐵 = 1,

𝑘𝜇𝐴 +
(
−𝛽2𝜌2 + 𝑏𝜇2 + 𝑘

)
𝐵 + 𝑚𝜇𝐶 = 1, (3.18)

−𝑖𝑚𝛽𝜇𝐵 +
(
𝑖𝛽𝜌3 + 𝑐𝜇2)𝐶 = 1.

We denote the matrix of coefficients in (3.18) by

𝑀 =
⎛⎜⎜⎜⎝
𝑝1 𝑘𝜇 0
𝑘𝜇 𝑝2 𝑚𝜇

0 −𝑖𝑚𝛽𝜇 𝑝3

⎞⎟⎟⎟⎠ where

⎧⎪⎨⎪⎩
𝑝1 = −𝛽2𝜌1 + 𝑘𝜇2,

𝑝2 = −𝛽2𝜌2 + 𝑏𝜇2 + 𝑘,

𝑝3 = 𝑖𝛽𝜌3 + 𝑐𝜇2,

(3.19)

are functions of 𝛽. Then, a simple calculation shows that

det𝑀 =
[
𝑝1𝑝2 − 𝑘2𝜇2]𝑝3 + 𝑖𝛽𝜇2𝑚2𝑝1.

In what follows we choose a sequence 𝛽 = 𝛽𝜇 so that det𝑀 ≠ 0. Then we take

𝛽𝜇 =
√

𝑘

𝜌1
𝜇2 −

𝑐0
𝜌1

with 𝑐0 =
𝑘𝜌1
𝑏𝜒

, 𝜇 ∈ ℕ, 𝜇2 >
𝑐0
𝑘
. (3.20)
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Note that 𝑐0 is well-defined since we have 𝜒 ≠ 0 in (3.10). Moreover, 𝑝1 ≡ 𝑐0 and from the definition of 𝑝2 in (3.19) along with
the identities for 𝛽𝜇, 𝑐0 in (3.20), we can define 𝑐1 as

𝑐1 = 𝑝1𝑝2 − 𝑘2𝜇2 = 𝑐0𝑝2 − 𝑘2𝜇2 = 𝑐0𝑘 + 𝑐20
𝜌2
𝜌1

=
𝑘𝜌21
𝑏𝜒2 > 0,

which implies, observing 𝑝3 in (3.19), that

det𝑀 = 𝑐1𝑝3 + 𝑖𝛽𝜇𝜇
2𝑚2𝑐0 = 𝑐1𝑐 𝜇

2 + 𝑖𝛽𝜇
(
𝑐1𝜌3 + 𝜇2𝑚2𝑐0

) ≠ 0.

Thus, the solution of (3.18) is given by

𝐴𝜇 =
𝑝3[𝑝2 − 𝑘𝜇] + 𝑘𝑚𝜇2 + 𝑖𝛽𝜇𝜇

2𝑚2

det𝑀
,

𝐵𝜇 =
𝑝1[𝑝3 − 𝑚𝜇] − 𝑝3𝑘𝜇

det𝑀
,

𝐶𝜇 =
𝑝1[𝑝2 + 𝑖𝛽𝜇𝜇𝑚] − 𝑘2𝜇2 − 𝑖𝛽𝜇𝜇

2𝑚𝑘

det𝑀
.

Besides, from the choice of 𝛽𝜇 in (3.20) one sees that 𝛽𝜇 ≈ 𝜎0𝜇, 𝜎0 > 0, when 𝜇 → +∞, and regarding the definitions of 𝑝2 and
𝑝3 in (3.19) we deduce |𝐴𝜇| ≈ 𝜎1𝜇, 𝜎1 > 0, when 𝜇 → +∞. Keeping in mind that Φ(𝑥) = 𝑖𝛽𝜇𝜑(𝑥) = 𝑖𝛽𝜇𝐴𝜇 sin(𝜇𝑥), 𝑥∈ [0, 𝜋],
then

‖𝑈𝜇‖2 ≥ 𝜌1 ∫
𝜋

0
|Φ(𝑥)|2 𝑑𝑥 = 𝜌1|𝛽𝜇|2|𝐴𝜇|2 ∫ 𝜋

0
sin2(𝜇𝑥) 𝑑𝑥 =

𝜌1𝜋

2
|𝛽𝜇|2|𝐴𝜇|2, (3.21)

which implies

|𝛽𝜇|𝜈−2‖𝑈𝜇‖ ≥
√

𝜌1𝜋

2
|𝛽𝜇|𝜈−1|𝐴𝜇| ≈ 𝜎2 𝜇

𝜈, 𝜎2 > 0, when 𝜇 → +∞. (3.22)

Therefore, from (3.16) and (3.22),

lim
𝜇→+∞

1|𝛽𝜇|2−𝜈

‖‖‖(𝑖𝛽𝜇𝐼𝑑 −
)−1

𝐹𝜇
‖‖‖ = lim

𝜇→+∞
|𝛽𝜇|𝜈−2‖𝑈𝜇‖ = +∞,

which proves (3.15). Hence, the optimality follows.
In particular, from (3.16) and (3.21) we also see that

lim
𝜇→+∞

‖‖‖(𝑖𝛽𝜇𝐼𝑑 −
)−1

𝐹𝜇
‖‖‖ = lim

𝜇→+∞
‖𝑈𝜇‖ = +∞,

and from Theorem 2.4 the semigroup
{
𝑒 𝑡} is not exponentially stable on .

This concludes the proof of Theorem 3.3. □

Remark 3.4. The optimality of the decay rate 𝑡−1∕2 provided by (3.13) was only proved for the boundary condition (3.5)3.
However, such a result can also be extended to (3.5)5 with minor adjustments in the proof of Theorem 3.3, whereas some tech-
nical incompatibilities arise for the remaining boundary conditions. In conclusion, the homogeneous thermoelastic Timoshenko
system (3.1)–(3.4) with boundary condition (3.5)3 or (3.5)5 is exponential stable if and only if 𝜒 = 0. The optimality result
for the boundary conditions (3.5)1, (3.5)2 and (3.5)4 is still open.
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APPENDIX A: OBSERVABILITY INEQUALITY FOR SYSTEMS OF TIMOSHENKO TYPE
In order to make this paper more self-contained, we have introduced this short appendix that brings up some results already
known in the literature. More precisely, we remember an observability inequality for systems of Timoshenko type in a gen-
eral static framework. It constitutes a fundamental result to extend localized estimates to the whole bounded domain under
consideration. Such achievement, and its consequences, were initially considered by the authors in [3,4,21].

We start by considering the following system:

𝑖𝛽𝑢 − 𝑣 = 𝑔1 in (0, 𝑙), (A.1)

𝑖𝛽𝜌1𝑣 − [𝑘(𝑢𝑥 +𝑤)]𝑥 = 𝑔2 in (0, 𝑙), (A.2)

𝑖𝛽𝑤 − 𝑧 = 𝑔3 in (0, 𝑙), (A.3)

𝑖𝛽𝜌2𝑧 − [𝑏𝑤𝑥]𝑥 + 𝑘(𝑢𝑥 +𝑤) = 𝑔4 in (0, 𝑙), (A.4)

where 𝑔1, 𝑔3 ∈ 𝐻1
0 (0, 𝑙), 𝑔2, 𝑔4 ∈ 𝐿2(0, 𝑙) and 𝜌1, 𝜌2, 𝑘, 𝑏 satisfy (2.6). For a vector-valued function 𝑉 = (𝑢, 𝑣,𝑤, 𝑧) and

0 ≤ 𝑎1 < 𝑎2 ≤ 𝑙, we use the notation ‖ ⋅ ‖𝑎1,𝑎2 to stand for

‖𝑉 ‖2𝑎1, 𝑎2 = ∫
𝑎2

𝑎1

(|𝑣𝑥 +𝑤|2 + |𝑣|2 + |𝑤𝑥|2 + |𝑧|2) 𝑑𝑥.
Proposition A.1 ([4, Proposition 3.12]). Under the above notations, let 𝑉 = (𝑢, 𝑣,𝑤, 𝑧) be a regular solution of (A.1)–(A.4)
and suppose that 0 ≤ 𝑎1 < 𝑎2 ≤ 𝑙. Then, there exist constants 𝐶0, 𝐶1 > 0 such that

|𝑢𝑥(𝑎𝑗) +𝑤(𝑎𝑗)|2 + |𝑣(𝑎𝑗)|2 + |𝑤𝑥(𝑎𝑗)|2 + |𝑧(𝑎𝑗)|2 ≤ 𝐶0‖𝑉 ‖2𝑎1,𝑎2 + 𝐶0‖𝐺‖20, 𝑙, (A.5)

‖𝑉 ‖2𝑎1,𝑎2 ≤ 𝐶1
[|𝑢𝑥(𝑎𝑗) +𝑤(𝑎𝑗)|2 + |𝑣(𝑎𝑗)|2 + |𝑤𝑥(𝑎𝑗)|2 + |𝑧(𝑎𝑗)|2] + 𝐶1‖𝐺‖20, 𝑙, (A.6)

for 𝑗 = 1, 2, where 𝐺 = (𝑔1, 𝑔2, 𝑔3, 𝑔4).

An important consequence of Proposition A.1 is the next corollary, which is the precise result we have used in the present
paper.

Corollary A.2 ([4, Corollary 3.14]). Let 𝑉 = (𝑢, 𝑣,𝑤, 𝑧) be a regular solution of system (A.1)–(A.4). If for some subinterval
(𝑎1, 𝑎2) ⊂ (0, 𝑙) one has

‖𝑉 ‖2𝑎1,𝑎2 = ∫
𝑎2

𝑎1

(|𝑢𝑥 +𝑤|2 + |𝑣|2 + |𝑤𝑥|2 + |𝑧|2) 𝑑𝑥 ≤ Λ, (A.7)

then there exists a constant 𝐶 > 0 such that

‖𝑉 ‖20, 𝑙 = ∫
𝑙

0

(|𝑢𝑥 +𝑤|2 + |𝑣|2 + |𝑤𝑥|2 + |𝑧|2) 𝑑𝑥 ≤ 𝐶Λ + 𝐶‖𝐺‖20, 𝑙, (A.8)

where 𝐺 = (𝑔1, 𝑔2, 𝑔3, 𝑔4).
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